更多>>行业动态
更多>>联系k8凯发
新闻中心
研究背景
系统架构
图2 车车通信列控系统架构
vbtc列控系统突破传统的区域控制器集中式的列车运行控制理论,建立全新的以列车自主控制为核心的系统控制模型。突破传统cbtc系统结构为列车-地面-列车的列车运行控制方式,列车和列车之间直接通信,通过车-车通信获取前车实时状态(位置、速度、加速度等),结合对前车行驶轨迹的预测,计算两车不发生位移重合的安全防护速度,使其能够根据跟随车的制动率匹配其减速度,从而实现基于相对速度制动追踪模型的安全防护(撞软墙)。这样就可以在保证列车前后方安全距离的基础上,两个相邻的列车就能以允许最大的速度和较小的间隔运行。车车通信列控系统正线追踪间隔相较cbtc系统缩短11%,达到80s,折返间隔降低29%,达到85s,大大提升了运营效率。
既有车车通信系统方案在信号系统故障后需要司机人工驾驶,无独立后备系统。vbtc列控系统新增完善的后备系统, 后备级别下通过高可靠激光雷达 毫米波雷达 机器视觉 惯性测量单元(imu) ai人工智能深度学习算法对周围环境进行高可靠感知,可以在视距范围内对轨行区的车辆、行人、小障碍物、信号机状态进行有效识别和防护,完成列车到目标物体间距离的计算,判断碰撞风险并监控制动距离,计算相应的列车控制指令,向车辆牵引、制动子系统输出相应的控制指令。保证在通信、地面系统等完全故障情况下,仍能够维持基本运行能力,实现sil4级列车安全防护及运行控制,提高降级模式下列车运行效率。车车通信列控系统在主用系统故障情况下,后备恢复时间平均缩短40%以上,解决了信号系统故障情况下,中心调度员无法快速掌握现场列车运行情况;以及司机人工驾驶的安全和效率无法保证的问题。
在此基础上,第5代车车通信列控系统将作为第6代自主虚拟编组运行系统的基础技术之一,面向轨道交通网络化建设及运营的痛点及需求,结合5g、云计算、物联网、人工智能、大数据等新兴信息技术,涵盖车车通信、网络化智能调度指挥、自主感知运行、虚拟灵活编组、车辆信号一体化平台及轨旁新型基础设施等,将进一步提升运营安全水平及乘客服务质量,降低建设及运营成本,实现路网客流-车流匹配及乘客的无缝出行服务,提升城市公共交通通行效率,满足乘客出行方式的多样化需求。